

ADF Introduction of Thermography Capability

Wade Farley

04 - 06 July 2018

PRESENTATION SCOPE

- Thermography Inspection Types:
 - Passive Thermographic camera looks at the heat source ie hot electrical connection, hot air leak, hot bearing, water in honeycomb panel, etc.
 - Active Thermographic camera looks at heat diffusion following application of energy from a external source.
 - This presentation will be on the introduction of flash thermography (Active).

INTRODUCTION

- Scope:
 - Who is DAVENG-DASA (NDT&CT).
 - What is Flash Thermography.
 - Why Introduce Flash Thermography.
 - The Flash Thermography Introduction Process.
 - <u>Current Introduction Progress.</u>

DEFENCE AVIATION SAFETY AUTHORITY

Non Destructive Testing and Composite Technology (NDT&CT) are a sub branch of the Directorate of Aviation Engineering (DAVENG). NDT&CT primary role:

- Training. NDT&CT delivers specialist training in Non Destructive Testing (NDT) and Aviation Composite Technologies (ACT) to ADF and Industry, including re-certification's.
- Engineering Support. NDT&CT design 21J NDT procedures to support the continuing airworthiness and structural integrity of ADF platforms.
- **Subject Matter Experts** to the ADF on NDT & ACT.
- **Authority.** Prescribing AMC & GM for DASR.

DASA - DAVENG (NDT&CT) CAPABILTY

- Non Destructive Testing:
 - NDT Training to EN 4179,
 - 21 J NDT Procedure development,
 - Introduction of enhanced or new technology,
 - Sponsor for ADF Non Destructive Testing publication, and
 - SME advice.
- Aviation Composite Technologies
 - Composite repair training,
 - Introduction of new composite repair practices, and
 - SME advice.

WHAT IS FLASH THERMOGRAPHY

WHY INTRODUCE FLASH THERMOGRAPHY

- DAVENG-DASA has mandate to introduce new technologies.
- Thermography is well suited for the inspection of carbon fibre composite panels.

WHY INTRODUCE FLASH THERMOGRAPHY

- DST-Group had been researching developments in the thermography for a number of years and produced a report on successful MRH 90 aircraft field trials.
- The Royal New Zealand Airforce has identified flash thermography as a means to conduct localised inspections on their NH90 (AUS MRH90).

FLASH THERMOGRAPHY INTRODUCTION PROCESS

- Understanding flash thermography.
- Equipment selection.
- Conducting trials and developing a general procedure to allow use of flash thermography on ADF aircraft.
- Developing a NDT level 2 course to train ADF technicians on the use of flash thermography.
- Identifying wider application of flash thermography within the ADF.

INTRODUCTION PROCESS: UNDERSTANDING FLASH THERMOGRAPHY

- Source thermography courses provided by domestic and international providers.
- Approach DST-Group for mentoring and SME advice.
- Design and manufactured composite test pieces to conduct trials.

INTRODUCTION PROCESS: EQUIPMENT SELECTION (THERMOSCOPE 3)

Defending Australia and its National Interests www.defence.gov.au

DISPLAYED ALGORITHMS – IMPACT DAMAGE

Log - Log

1st Derivative

2nd Derivative

Defending Australia and its National Interests www.defence.gov.au

INTRODUCTION PROCESS: PROCEDURE DEVELOPMENT

- NDT&CT procedures state a size of discontinuity that the procedure should reliably detect.
- Procedure development trials are conducted to assess the capabilities of the technique.
- Independent verification and validation trials are conducted to provide a level of confidence in the sensitivity of the procedure.
- Target delamination size to find: 10mm Ø at ~2.0mm deep.

TEST PANEL CONSIDERATIONS

- Effects of copper mesh.
- Simulating delaminations.
- Effects of different aircraft coatings.
- Effects of build differences ie autoclaved vs vacuum bagged repair.
- Effects of testing curved surfaces.

TEST PANEL CONSIDERATIONS

- Effects of copper mesh.
- Simulating delaminations.
- Effects of different aircraft coatings.
- Effects of build differences ie autoclaved vs vacuum bagged repair.
- Effects of testing curved surfaces.

MANUFACTURE OF ARTIFICIAL DELAMINATION

- Criteria include:
 - Similar thermal characteristics to actual delamination.
 - Thermal response to be repeatable.
 - Ease of manufacture.
 - Repeatability of manufacture.
 - Low cost.
 - Ability to control the depth of delamination.
 - Ability to control the size of delamination.

SIMULATED DELAMINATION

- Flat Bottom Holes.
- Metallic strips.
- Mechanically induced laminate separation.
- Teflon Insert
 - Commonly used to simulate thermal defects.
 - Can be thermally similar to resin in the panel.

MECHANICALLY INDUCED LAMINATE SEPARATION

Defending Australia and its National Interests www.defence.gov.au

FLAT BOTTOM HOLE WITH CFRP INSERT

CROSS SECTION OF INSERT IN CFRP FLAT BOTTOM HOLE ©

Defending Australia and its National Interests www.defence.gov.au

TEST PANEL TO COMPARE DELAMINATION TYPES

- Test Panel 1
 - 21 Ply Carbon Fibre Reinforced Plastic (nominal thickness of 5.1mm).
- 4 x 10mm Ø Flat Bottom Holes (FBH) to give delaminations at approximately 2.5mm depth as follows:
 - 1 FBH open.
 - 1 FBH with Teflon and CFRP plug inserted.
 - 1 FBH with CFRP plug inserted with 0.2mm air gap.
 - 1 FBH and CFRP Plug inserted fully (simulated kissing bond).

RESULTS OF TEFLON VS FBH TRIALS

- 4 FBHs visually determined the following order of greatest contrast:
 - FBH open.
 - FBH with CFRP plug inserted with 0.2mm air gap.
 - FBH with Teflon and CFRP plug inserted.
 - FBH and CFRP Plug inserted fully (kissing bond).

LINE PROFILE FOR TEFLON VS FLAT BOTTOM HOLE

Defending Australia and its National Interests www.defence.gov.au

TEST PANEL CONSIDERATIONS

- Effects of copper mesh.
- Simulating delaminations.
- Effects of different aircraft coatings.
- Effects of build differences ie autoclaved vs vacuum bagged repair.
- Effects of testing curved surfaces.

EFFECTS OF VARIATIONS IN AIRCRAFT PAINT

- Variations in paint colour and finish will effect the absorption of the flash lamp energy.
 - Shiny white paint poor energy absorption.
 - Matt black paint good energy absorption.
- Damage to paint will show up in the thermal image and locally effect energy absorption.

CORRECTING AIRCRAFT PAINT VARIATION

- The application of a matte black paint prior to testing
 - Normalises emissivity (absorption of radiated energy).
 - Provides a uniform surface finish for all test items.
 - Ensures consistent test results.
- Dupli Colour Matte Black Custom Wrap paint identified as suitable.

COMPARISON OF EMISSIVITY OF BLACK PAINTS

Defending Australia and its National Interests www.defence.gov.au

HIGH EMISSIVITY REMOVABLE COATING (HERC)

Defending Australia and its National Interests www.defence.gov.au

TEST PANEL CONSIDERATIONS

- Effects of copper mesh
- Simulating delaminations
- Effects of different aircraft coatings
- Effects of build differences ie autoclaved vs vacuum bagged repair
- Effects of testing curved surfaces

DIFFERENCES IN PANEL BUILD

- Initial trials were conducted on test panels manufactured using the vacuum bag method.
- Trials on scrap aircraft panels revealed less thermal penetration than the test panels.
- Vacuum bagged panels Lower fibre to resin ratio than those cured using an autoclave.
- Heat dissipates faster in carbon than epoxy resin.

MANUFACTURING TECHNIQUES

Vacuum Bagged

Autoclave

TEST PANEL CONSIDERATIONS

- Effects of copper mesh.
- Simulating delaminations.
- Effects of different aircraft coatings.
- Effects of build differences ie autoclaved vs vacuum bagged repair.
- Effects of testing curved surfaces.

EFFECT OF PANEL CURVATURE

Defending Australia and its National Interests www.defence.gov.au

CURRENT INTRODUCTION PROGRESS

- Flash Thermography General procedure developed for inspecting aircraft carbon fibre composite materials.
- 'Round Robin' trials with ADF and RNZAF in progress to ensure general procedure sensitivity is appropriate.
- Flash thermography NDT Level 2 course currently being developed (focusing on aircraft composite testing).

QUESTIONS

Contract of the second second