C-130J-30 Wing Fatigue Test - Test Interpretation

111

AASC Mr Ross Stewart

July 2018

Agenda

- 1 History of C-130J WFT
- 2 Type Certification Basis (TCB)
- 3 Test Interpretation
- 4 TI Tools/ Data
- 5 Verification and Validation
- 6 Selection of Locations
- 7 Spectrum
- 8 Spectrum
- 9 Section

10 Section

History of C-130J WFT

- The WFT primary objective was to:
 - Maximise the Structural Life of Type (SLOT) of primary wing structure
 - Maximise aircraft availability throughout the defined SLOT
- Combined RAAF and RAF test
 - Test at MA in UK
 - Teardown by AIRBUS at Richmond
 - Separate Test Interpretation (TI)
- Test Spectrum OLM based
 - Selection of RAF and RAAF flights
 - Super block 1500 flights (3100 flying hours)
 - 5 x standard block 250 flights
 - 1 x 250 flights with higher amplitude cycles
 - i.e. few more severe flights

History of C-130J WFT

- Test at MA in UK
- Test article
 - Centre and outer wings
 - No TE or LE
 - Fuselage support structure
 - Nacelle structure
- Loading
 - 40 actuators
 - Vertical, lateral and torque loads applied to each engine
 - Airbag for Fuselage pressurisation
 - 600 gauges to assist TI, confirm loads and compare to OLM

(UK)

History of C-130J WFT

- Damage tolerance testing
 - 9 cracks introduced cracks late in test
- Reached durability goal
- Residual Strength Test (RST)
 1.2 DLL
- Accelerated testing + additional RST
- Failed past limit load on 6th RST
 - Wing root
 - Failure location expected
- Teardown
 - By AIRBUS at Richmond
 - -CW
 - 1 OW
 - 2nd OW past engines

Type Certification Basis (TCB)

- For C-130J-30 Service Entry MIL-S-5700 series standards supplemented by
 - Aeroelasticity requirements of MIL-A-8870
 - Durability guidelines of AFGS 87221A
 - Damage tolerance requirements of MIL-A-83444
 - Gust requirements of DEF-STAN 00-970

• For WFT TI

- JSSG 2006
- EN-SB-08-001 and EN-SB-08-002
- Interpretation by Authority
 - Convert specifcation into suitable requirements
 - Diffcility in retrospectivly applying these to a designed aircraft

Structures Bulletin

ASC/EN Bldg 28, 2145 Monahan Way WPAFB, OH 45433-7017 Phone 937-255-5312

Number:	EN-SB-08-002, Revision A
Date:	18 March 2011
Subject:	Revised Damage Tolerance Requirements and Determination of Operational Life Limits for Slow Crack Growth Metallic Structures

Test Interpretation

- TI undertaken by QinetiQ and DST Group
 - QinetiQ Standard locations
 - DST Group Some complex MSD/MED locations
- QinetiQ Part 21 Designs
 - ICA
 - ASIMP Vol 2 Updates
 - ADF MAwL and ICA
 - Implementation impact considered
 - Fleet status compared to ICA
 - Time for implementation
 - Alignment with major servicing's

• LOT

- Preliminary estimates for individual TI locations
- TDLL
- Probability Risk Assessments later TI stages

UNCLASSIFIED

Teardown (CW-1 Fractography)

Test Interpretation

- Replace current ICA
 - OEM based ASIMP Vol 2
- TI Process documented within guides
- Specific Tools / data developed
- V&V of Data, tools and process
 - TCB
 - Data integrity
 - Robust
 - Process documentation
- Authority approval before process starts

• DADTA template

- FASTRAN
 - Retardation crack growth model
- FAMS
 - Strain life model
- Generates crack growth curve
- Calculates Intervals
- Includes
 - Spectra
 - Material data
- Accounts for multiple phase crack growth
 - Continuing damage

- Geometry Factors
 - Stress check & classical solutions into generic tabulated data
 - Allows build up of locations
 - Developed for each situation
 - Significant compounding to develop solutions
 - Up to 12 crack phases for some locations

QINETIQ

• Geometry Factors

- For calibration
 - Beta at fractographic recorded point
 - Same point on the crack face
 - Not at 5 and 80 degrees
 - Crack aspect ratio
 - Test crack progression
 - Crack interaction

– For DTA

- Fixed aspect ratio a/c = 1.00
- Nominal blueprint geometry
- DTA crack progression
- Consistent with calibration Beta

- Coupon testing
 - Da/DN data
 - short and long crack lengths
 - Fatigue test spectrum clipping
- OEM Fracture toughness
- Handbook yield strength

- IMSst
- Data repository
 - Test defects
 - Fragments
 - Findings
 - All test reports
 - NDI
 - Fracto
 - Repair decisions
 - Defect reports
- Assists in data quality
- Web based

Verification and Validation

- DADTA template
 - FASTRAN
 - FAMS
 - Outputs comply with TCB
 - In particular continuing damage
- Confirm TIRS
- Material
 - Da/DN data
 - Other data
- Transfer factors
 - TIRS to EFH
 - Converting outputs to match individual tracking program (IATP)

Verification and Validation

- WFT loading
 - OLM to WFT gauge results
 - Along / across the span
 - Over time
 - Ensure loading remains constant
- Comparison of WFT cracking with DTA
- Authority sign off
 - When DaDTA tools used correctly ICA will be compliant with TCB

QINETIQ

Selection of Locations

- 1400 findings
 - Most findings will not undergo fractography and DTA

Fuselage Station

- Extant SSI from LM Aero
- Critical test cracking
 - Size and density of findings
 - Criticality of failure
- Priority
 - Test crack size
 - Time of cracking
 - Extant maintenance program impacts

CWLS Panels

Wing Station

Spectrum

- Seven AP spectra
 - ATS & TIRS
- Stress Transfer Factor (STF)
 - Strain gauge
 - OEM data
 - FEM
- Test Representivity Factor (RF)
- Applied Test Spectrum
 - ATS = AP ATS x STF x RF
 - For fatigue test cracking
- Calibration Factor (CF)
- Test Interpretation Spectrum
 TIRS = AP TIRS x STF x CF

Calibration Factor

- Factor on overall stress
 CF x ATS
- DTA of cracking
- Compare with qualitative
 Fractography results
- Overcomes deficiencies
 - STF
 - Beta

Calibration Factor

- Iterative process
- Simple beta
 - Refined if required
 - Account for other geometry
 - Account for crack interaction
 - Load redistribution
- Similar CF for adjacent cracks
- May have multiple CFs if local failure allowed
 - Accounts for local stress transfer

DTA

- Cracking Scenario
 - Worst of test cracking
 - LM DTA
 - Or other?
- Multiple test cracks not necessarily the worst case
 - TCB requires only a single 0.05" flaw
 - TCB continuation damage flaw
- Multi phase crack growth
- Intervals derived from crack growth curve as per TCB

Interpretation

- TIRS intervals converted to EFH
- EFH intervals for ICA
 - Allows IATP
- Configuration differences between the test article and the fleet
- Comparison of derived crack growth curves
 with relevant in-service and test cracking data
 - Account for all findings in control area
- Sense checks for comparable programs
- Implementation urgency

Interpretation

- Need for modifications
 - Low recurring interval
 - High access cost
 - Planned change vs Repair when found
- Suitability of NDI procedures
 - Extant OEM procedures
 - Would service cracks be found
 - Alter a_{ndi} or alter NDI type

Implementation

- EFH intervals tracked by IATP
- ASIMP Vol 2 updates
- Ensure adequate time for implementation
 - Escalate if any immediate safety issue present
 - Reduced Threshold Interval
 - Reduced Recurring Interval
- Provide aircraft specific ICA if needed
- Aim to align with major routine servicing's
- All may need refinement of analysis (not 100% on what this is)
- Suggestions for CAMO

Date

Summary

• By end of TI

- 1400+ findings
- 55+ Fractography reports will be required
- 46 CF curves
- 57 DTAs
- 91 Locations
 - locations covered DTA at more critical points
- 11 areas were MSD
 - Just started to well advanced
- 6 locations with developed MED
- 4 locations for PRA

Currently Completed

- 22 locations
- 13 DTAs
- 19 CF curves

Summary

- Increase in thresholds and recurring intervals
 - Can be aligned with routine servicing's
 - Increased aircraft availability
 - Less chance of inspection damage
- Improvements believed to be due to more advanced tools

Lessons Learned

- Fracto excellent
 - used to account for load changes due to crack interaction
 - Provides confidence
- Usefulness of strain gauge locations
 - Not ideal for STF (local strain effects)
 - Great for OLM comparisons
 - Identify if load redistributes during course of testing
- Confidence in TI Process is dependent on V&V at multiple stages of development
- Full understanding of Test outcome gives confidence in ICA outcome
- Next stage LOT
 - Probabilistic Risk Assessments

27 C-130J-30 Wing Fatigue Test - Test Interpretation | July 2018 | ©