An Ultrafast Crack Growth Lifing Algorithm for Probabilistic Damage Tolerance Analysis

Juan D. Ocampo St. Mary's University, San Antonio

Harry Millwater, Nathan Crosby

University of Texas at San Antonio

Aircraft Airworthiness & Sustainment Conference

July 3rd 2018, Brisbane, Australia.

- Requires a crack growth integration routine (ODE solver)
- Requires K solutions or weight functions
- Net section yield calculations

- Create an <u>equivalent constant</u>
 <u>amplitude</u> from an arbitrary spectrum
- Use an internal <u>adaptive time</u> <u>stepping</u> Runge-Kutta algorithm to grow the crack (Cycles become the independent variable)
- 3) Collect the top 100 (or so) damaging realizations for further examination and potential reanalysis

Internal CG Code

ICG Capabilities		
Method	4-5 th order Runge-Kutta	
Accuracy	Error controlled by user tolerance	
Speed	~7000/sec single proc.	
Parallel	95% speedup on 8 proc.	
K solutions	Newman-Raju, read beta tables	

Crack Growth Result

Equivalent Stress

Equivalent Stress Transformation for Efficient Probabilistic Fatigue-Crack Growth Analysis under Variable Amplitude Loadings Yibing Xiang and Yongming Liu

Corner Crack in a Hole

Variable	Value
Width	4 in.
Hole Offset	0.5
Thickness	0.25 in.
Hole Size	0.156 in.
Eq. spectrum	10.01 KSI
С	1.0E-09
Paris_m	3.8
Walker_m	0.5
ai = Ci	0.005 in

Surface Crack in a Hole

Through Crack in a Lug

Over Load Example

Eq. Stress Examples

Bilinear Paris Example

The equivalent stress is a function of the crack growth rate. Incorporate this relationship within the ODE solver.

$$\Delta \sigma_{eq}(n, a(N), c(N))$$

$$\frac{da}{dN} = C \left(\Delta K \left(\Delta \sigma_{eq}, a, c \right) \right)^n = 0$$

$$\frac{dc}{dN} = C \left(\Delta K \left(\Delta \sigma_{eq}, a, c \right) \right)^n = 0$$
Initial conditions: $a(0) = a_i, \ c(0) = c_i$

Fast ODE Solver

- Based on best practices from well known and available ODE solvers, e.g., Petsc, Sundials, RKSuite
- Paired Runge-Kutta implementations, 2(3), 4(5), 7(8), e.g., 4th and 5th order solutions computed simultaneously. Gives high quality error estimate.
- Automatically selects step size based on user input and error estimate. Produces large steps early in the life, smaller steps later.

0.030 prev stages 0 $k_{i} = f\left(x_{n} + c_{i}h, y_{n} + h\sum_{j=1}^{i-1}a_{i,j}k_{j}\right)$ current stage 0.025 0.020 $y_{n+1} = y_n + h \sum_{i=1}^{n} b_i k_i$ crack length 0.015 $\frac{da}{da} = f(a, c, K_c, C, m, b(a))$ $d\Lambda$ 0.010 Initial Conditions: $a(0) = a_i$ 0.005 0.000 200 400 600 800 1000

cycles

15

- > ϵ_i is the absolute value of the difference between 5th and 4th order evaluations of the crack size
- > Constants b and d determined empirically by the authors
- Step size is increased or decreased depending on the ratio of the user-defined tolerance to the error

19

Variable step sizes - corner crack integration

Crack Size

Internal K-Solutions

- Tension Loading only, bending / pin loading not implemented yet
- Centered Hole only
- Weight functions not implemented

Beta Tables

! Thr	u crac	k betas	5	
c ₁	β_1			
c ₂	β_1			
CN	β ₁			
! C-t	ip dir	ection		
	a_1	a ₂		$a_{\rm N}$
c ₁	β_{11}	β_{12}	•••	β_{lN}
C ₂	β_{21}	β_{22}		β_{2N}
CN	β_{N1}	$\beta_{\rm N2}$		β_{NN}
! A-t	ip dir	ection		
	a_1	a ₂		a_{N}
c ₁	β_{11}	β_{12}		β_{lN}
C ₂	β_{21}	β_{22}		β_{2N}
CN	β_{N1}	$\beta_{\rm N2}$		$\beta_{\rm NN}$

- Use Afgrow /Nasgro/other to generate beta tables for any K solution. ICG reads the table and interpolates to get betas.
- Allows ICG to solve any crack model

Through Crack at Hole (Tension)

CParis = 10⁻⁹, nParis = 3.8, Eq. Spectrum = 10.062 ksi

Corner Crack at Hole (Tension)

Surface Crack at Hole (Tension)

CParis = 10⁻⁹, nParis = 3.8, Eq. Spectrum = 10.062 ksi

Thru Crack at Lug (Tension)

> CParis = 10⁻⁹, nParis = 3.8, Eq. Spectrum =8.3 ksi

Parallel & Vectorized

Compute Times

# samples/sec	# processors	Windows (s) ¹	Linux (s) ²
Master Curve	1	55,000	51,000
Internal CG	1	3800/7500	3200/6500
Master Curve	8	412,000	380,000
Internal CG	8	28,500/57,000	24,000/50,000

¹2.8 GHz Intel core 7, 16 Gb Ram ²3.5 GHz Intel Xeon, 64 Gb ram 4-5 rule, 10⁻⁶/10⁻⁴ relative error

Master Curve Limitations

- Crack may ovalize during development of the master curve.
- This ovalization is ignored during the probabilistic analysis.
- This may or may not be conservative.

3000

Flights

3500

AG00

Flights

Risk Calculations

Crack Growth Capabilities

	AFGROW	NASGRO	ICG
Create avsn	Y	Y	Y
MCS	Y	Y	Y
NI	Y	Y	Y
Kriging	Y	Y	coming
RUL	Y	Y	Y
K solutions	Comprehensive	Comprehensive	Newman-Raju Read Beta tables
Weight functions	Comprehensive	Comprehensive	N (maybe)
Net section yield	Y	Y	coming
Retardation	Y	Y	N
Adaptive error control	% Δa	% Δa	Adaptive based on RK
Parallel capable	N	Y	Y (multi-threaded)

Ultrafast Approach Conclusions

- Equivalent constant amplitude is accurate at predicting variable amplitude crack growth – *for all problems to date.*
- 2) Adaptive RK algorithm to grow the crack is very effective (~7000 evaluations/sec/proc)
 - Capability to read beta tables provides an attractive method to incorporate a variety of crack models.
- 3) The top 100 (or so) damaging realizations can be further examined for potential reanalysis

- Verify using more geometries and a larger variety of spectra. Open to suggestions.
- Compute beta tables on-the-fly with Afgrow & Nasgro.
- Build library of highly-used beta tables to include with the software.
- Expand the equivalent stress method to work with varying crack growth laws, e.g., bilinear Paris, Nasgro equation, and tabular da/dN input.

SMART|DT Current Development Activities

- > Ultrafast crack growth code Probabilistic data base >(EIFS, POD, Kc, da/DN, etc.) MPT version for clusters New Java-based GUI Risk based inspections > Importance Sampling
- > Fleet management

File Documentation Help		
Constraints and the result of the resul	Name Aeroth Mau Aeroth Mau Aeroth Made Aeroth Stell Ne Aeroth Stell Ne Becognate	

Probabilistic Fatigue Management Program for General Aviation, Federal Aviation Administration, Grant 12-G-012

Sohrob Mattaghi (FAA Tech Center) – Program Manager

Michael Reyer (Kansas City) - Sponsor

Backup Slides

Improved results compared to Master Curve

Through Crack in a Hole

RKSUITE adaptive step size control

- n Error estimate at each step is needed to adapt step size
- Paired higher/lower order Runge-Kutta evaluations are used to estimate error
- The trick to get high efficiency is to use the same stages for both evaluations of the pair

- ⁿ Quick example using erf, starting at x=-1.5, stepping to x=0.5
- n This RK pair uses 8 stages per step
- n ... stage 1 ...

n ... stage 2 ...

n ... stage 3 ...

n ... stage 4 ...

n ... stage 5 ...

n ... stage 6 ...

n ... stage 8 ...

- n For Runge-Kutta formulas, the order of the method is determined by constraints satisfied by the coefficients
- $^{\rm n}$ Different linear combinations of the same stages can produce both $4^{\rm th}$ and $5^{\rm th}$ order estimates of y_{n+1}

- ${\tt n}$ ${\tt \epsilon}_i$ is the absolute value of the difference between 5^{th} and 4^{th} order evaluations
- Step size is increased or decreased depending on the ratio of tolerance to error

Equivalent Stress

$$\Delta \sigma_{eq} = \left[\sum_{i=0}^{n} p_i(R_i, \Delta \sigma_i) \frac{C_{\Delta \sigma_i}}{C_{\Delta \sigma_{eq}}} \Delta \sigma_i^{m}\right]^{1/m} \qquad \Delta \sigma_{eq} = \left[\sum_{i=0}^{n} p_i(R_i, \Delta \sigma_i) \frac{C\left(R = \frac{\sigma_{min}}{\sigma_{max}}\right)}{C(R = 0)} \Delta \sigma_i^{m}\right]^{1/m}$$

$$g(R) = C\left(R = \frac{\sigma_{min}}{\sigma_{max}}\right)$$

$$\Delta \sigma_{eq} = \left[\sum_{i=0}^{n} p_i(R_i, \Delta \sigma_i) \frac{g(R)}{g(R=0)} \Delta \sigma_i^{m} \right]^{1/m}$$

Using Walker, C can be expressed as function of R as:

$$\frac{da}{dN} = C(\Delta K(1-R)^{(m-1)})^n$$
$$\frac{da}{dN} = g(R)(\Delta K)^n$$
$$g(R) = C((1-R)^{(m-1)})^n$$