

Australian Government

Department of Defence Capability Acquisition and Sustainment Group

Ageing Aircraft Sustainment Optimising Aircraft Availability

Trent Simcock

Structural Fatigue Manager Maritime Patrol Systems Program Office

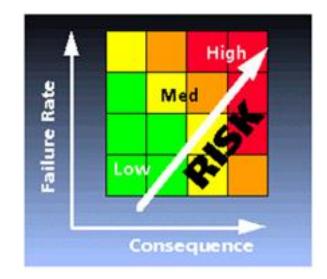
Scope

- Ongoing Issues with Sustainment of Ageing Aircraft
- Evolving role of Engineers in the Risk Assessment process
- Stress Corrosion Cracking on the AP-3C Orion
 - Degradation of routine inspections
 - Initial findings
 - Interim strategy development
 - Analysis of findings
 - Long term Strategy development
 - Development of specialist NDT methods
 - Physical testing for validation

Issues with Ageing Aircraft

- All organisations dealing with sustainment of aircraft can attest to the common issues surrounding ageing platforms
 - Corrosion
 - Fatigue
 - Parts obsolescence
 - Systems integrity
 - Personnel complacency, inadequate training

- Each of these issues can, separately, create larger issues which can impact aircraft serviceability and availability
 - Can also combine to create a 'Swiss Cheese' effect



- Engineers have had an evolving role in the Risk Assessment process over the years
- Mr Rick Ryan (Branch Head, Tactical Aircraft Strength, NAVAIR) discussed this topic as the Keynote speaker at the 2015 DGTA ASI Conference
 - Historically, any measurable risk of an in-flight failure was unacceptable
 - Cost of maintaining programs (among others) began to erode the authority – ageing aircraft?!

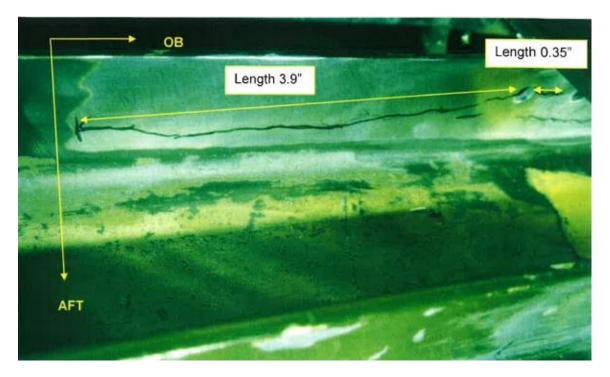
- Over time the concept of 'Acceptable Risk' began to gain ground
- A cumulative risk determination due to fatigue is relatively easy (for a tracked fleet)
 - Inspection of properly selected, statistically significant number of aircraft
 - Future risk assessed on projected usage and maintenance of the aircraft
- What about corrosion, wear, build quality not so simple to quantify

- Risk appetite within the organisation has also recently shifted
 - Historically has been ALARP which is more conducive to acceptance of risk
 - New concept is SFARP mandating that everything that can be reasonably done to reduce the risk has been completed

- Risk based engineering is not a paradigm shift
 - Still make assessments IAW credible standards
 - Use relevant, credible standards to determine the level of non-conformance
 - Manage the non-conformance through risk analysis <u>if</u> deemed necessary
- All about managing the increase in risk compared to that inherent in the standard(s) or Certification Basis
- Primary responsibility remains making every effort to maintain safety and airworthiness

- Why is this relevant to ageing aircraft?
 - Financial viability to rectify issues when funding and resources on ageing aircraft is steadily reduced
 - Organisation becomes willing to accept a level of risk in exchange for continued aircraft capability
 - Utilisation of risk assessments to optimise aircraft availability through implementation of a well structured and approved risk management plan

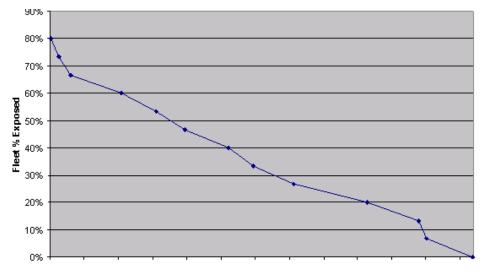
Stress Corrosion Cracking Wing Panel Rib H-Clips AP-3C Orion



- Known ageing aircraft issue
 - International operators have detected the same issue
- Historically, internal tank SCC inspections conducted at every R3 with only limited indications found
- Safety By Inspection program inspects a number of the H-clip locations
- At recent R3 servicing, NDT performing inspections around the H-Clip area visually detected a potential crack indication post completion of the visual inspections

- Crack confirmed with surface scan
- NDT performed a visual sweep of the tank area
- Detected and confirmed a further 7 cracks

- Cracks were being dismissed as scratch/scribe marks potentially due to insufficient lighting
- Corrosion + Personnel complacency and inadequate training

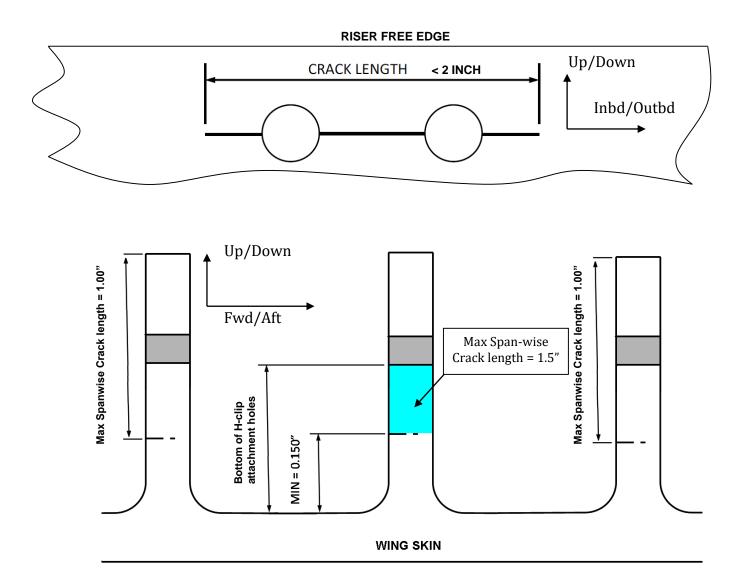


- SMM and SDE directed a complete re-examination of both aircraft at the facility
 - Training delivered to mechanical workforce
 - Additional cracking detected
 - Increase in the number of 'suspect cracking' which all had to be confirmed by NDT – 10% (or less) were actually cracks
- Over conservatism due to cracks being missed on other aircraft

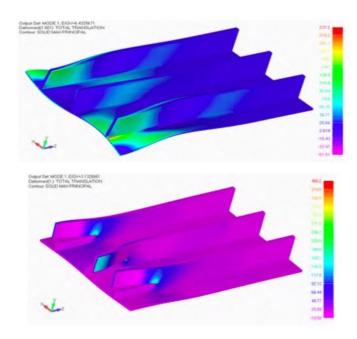


- Initiation of assessment at the SPO to determine immediate and ongoing management strategy(ies)
- During initial development there were a number of considerations
 - Availability of aircraft to inspect
 - Personnel effort for inspection
 - Time required for rectification actions
 - Ongoing inspection requirements
 - Impact to maintenance personnel availability
 - Impact to aircraft availability
 - Cause of cracking fatigue initiated, material properties?
- Begin process of optimisation of aircraft availability through early consultation with stakeholders

- Involved the Maintenance Contract Manager and Fleet Planner early to ensure the section was using up-to-date information
 - Accurate picture for fleet exposure to the risk of structural failure due to SCC



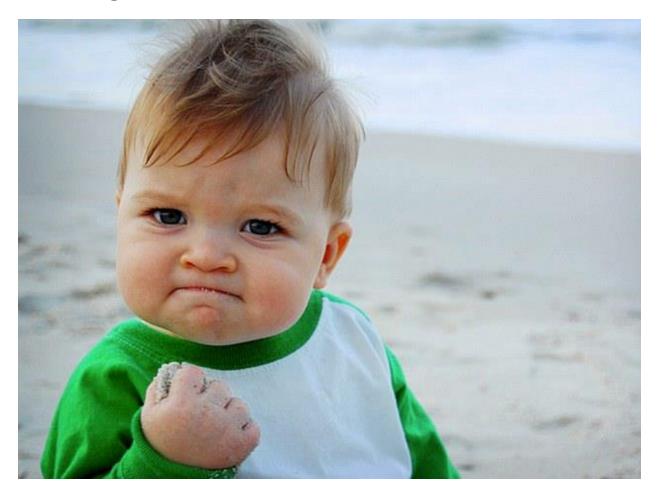
- Worked with the maintenance contractor to determine length of time to conduct inspections and any rectification actions
 Impact on TMS and resources (personnel)
- Determined that full repair of each cracked site would create a heavy backlog for structural fitters and tank entry trained personnel
- Moved onto development of a more risk tolerant solution



- Risk Based Engineering!
 - Had to determine an accurate, immediate and longer term failure risk and consequences with reasonable conservatism
- Engineering within the maintenance organisation developed FE model to determine failure characteristics of the 'worst case' found
 - Looked at buckling failure of the local riser region and the global panel buckling with multiple SCC sites
 - Different cracking configurations tested
 - Height up riser
 - SCC thickness through riser
- Development of a Special Technical Instruction (STI, Airworthiness Directive) to inspect all aircraft

Ageing Aircraft Sustainment

- Initial compressive strength testing conducted to assist in validation of design behind the STI – single riser test only
 - Laboratory EDM slots in the riser
 - Results from FE model and test were in good alignment



- Inspection of properly selected, statistically significant number of aircraft
 - In this case, all aircraft inspected including a set of wings from a withdrawn aircraft
- All aircraft have been inspected with only a handful of repairs required IAW the developed strategy
- The inspection was incorporated with very limited affect to aircraft availability due to optimisation activities conducted
 - Enough forward planning to integrate requirements into standard servicing timeframes
 - Involved the correct stakeholders to result in the most effective outcome

• Job done, right?

- So Far As Reasonably Practicable
- This was only one part of the developed strategy to ensure airworthiness was maintained
 - Ongoing inspection requirements
 - Continued impost for entering all tanks at every R2/R3 servicing (R2 nominally has no tank entries)
- Investigated more efficient NDT options for inspection of the SCC

- Phased Array Ultrasonic inspection was identified as having significant potential
 - Successful on-aircraft trials have been conducted
 - Final approved NDT procedure yet to be released
 - Significant cost of equipment purchase is offset by the increased availability of aircraft once incorporated

- Aim is to completely negate the need for ongoing tank entries during the R2 servicing
 - Optimisation of aircraft availability through reduced maintenance effort
- Final step in the strategy is physical residual compressive strength testing of in-service wing panels with true SCC present
 - Wing panel samples removed from retired aircraft
 - Full NDT carried out to ensure accurate recording of presence of SCC
 - Develop testing plan to ensure panels are loaded and behave correctly

- Use FE models to perform the same testing
- Compare the two tests to assist with validation of the original FE analysis performed to authorise STI
- Long term strategy (yet to be implemented)
 - Track SCC growth using Phased Array Ultrasonic NDT equipment
 - Phased Array NDT procedure to detect new cracks
 - Confirm validity of original FE analysis
 - Any SCC outside of the original short term strategy to be repaired as per Standard Repair practices

Summary

- Significant Stress Corrosion Cracking issue identified
- Identification and rectification of root cause
- Development of well defined and structured management strategy with input from key stakeholders
 - Contract manager, maintenance organisation, regulator etc
 - Immediate actions completion of inspections of aircraft in maintenance
 - Inspection of all aircraft
 - Development of Phased Array Ultrasonic NDT procedures
 - Validation of FE model using physical compressive residual strength testing of in-service wing panels
- Result management of the risk of SCC to airworthiness of the aircraft all with minimal impact to aircraft availability

Comments

Questions

