

ADF Aircraft Propulsion Systems - Challenges & Lessons Learnt

Flight Lieutenant Rashmin (Rash) Gunaratne Officer-In-Charge – Propulsion Systems Integrity, DAVENG-DASA

UNCLASSIFIED

Intro

Disclaimer

- Presentation is my opinion, based on my own experience of being heavily involved in ADF propulsion system management
- You may already know all the information presented here
 - Think if you are actually applying them on a day to day basis
 - Think about how it relates to you & your workplace
- Open to answering hard questions, or to be told you think I'm wrong

Intro

Overview Bathtub

Case Study 1 Case Study 2 Case Study 3 Case Study 4

Defending Australia and its National Inte

www.defence.gov.au

PSI in DAVENG-DASA

Australian Government Department of Defence

Defence Aviation Safety Authority

UNCLASSIFIED

PSI in DAVENG-DASA

• Highlight a few recurring issues in the form a case studies

- Platform reliability lifecycle curve gives a false sense of security to the operators during the mid-life of the platform.
- Engine health monitoring is vital throughout it's life
- Changes to mission mix and missions over the course of the platforms life has deviated from OEM assumptions. Can invalidate OEM life limits.
- Wear Debris Analysis (WDA) overview

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 2 Case Study 3 Case Study 4 Wear Debris Lessons Learnt

Overview

Australian Government Department of Defence Defence Aviation Safety Authority UNCLASSIFIED

Scrub a dub-dub

UNCLASSIFIED

Case Study 1 – C130J Engine Degradation

- Presented at the 2018 AA&S conference by StandardAero
- Multiple engine IFSDs in a short period of time
- Cause:
 - Worn compressors
 - Lack of MGT margin
 - Engine attempts to increase fuel flow attempts to run hot section hotter
 - Significant degradation of hot section Requires replacement

Intro Overview

Bathtub

Case Study 1

Case Study 2

Case Study 3

Case Study 4

Wear Debris

UNCLASSIFIED

Case Study 1 – C130J Engine Degradation

- Impact of engine degradation
 - Lack of engine availability impact on missions
 - Increased engine induction to DM venue
 - Increased cost of engine repair & OH
 - Significant damage on downstream components
 - Increased maintenance burden
 - Engine removal & installation
 - Increased effort to make other aircraft serviceable

Intro Overview

Bathtub

Case Study 1

Case Study 2

Case Study 3

Case Study 4

Wear Debris

Case Study 1 – C130J Engine Degradation

- Rectification
 - Resurgence in active engine health monitoring
 - Used to be conducted in anger a few years prior to failures
 - Fleet planning to schedule engine removals
 - Preventative maintenance to maintain engine health
 - Introduction of OEM limits to the compressor, which is seeing all compressor blades replaced at next shop visit.
 - 5 year compressor remediation program to have all engines return to the shop to have their compressors replaced.

Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 4 Wear Debris

Intro

Case Study 1 – C130J Engine Degradation

Intro

Bathtub

Case Study 1 – C130J Engine Degradation

- Key takeaways
 - Complacency when engine fleet is serviceable
 - Dropped the ball in engine health monitoring
 - Reduced emphasis on proactive engine inductions
 - Reduced emphasis on preventative engine maintenance
 - Lack of understanding of importance of continued effort in engine health monitoring
 - High reliability gave CAMO a false sense of security
 - Posting cycle impacted on engine health management
 - Having a health monitoring system is useless if no one is actually doing anything with the information

anything Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 3 Case Study 4 Wear Debris Lessons Learnt

Intro

Case Study 2 – ADF Helicopter Engine

- Recently an ADF helicopter suffered an engine component failure
- Investigation revealed:
 - A PT blade migrated forward within its PT1 disc slot
 - Blade liberation caused secondary damage to PT1 and PT2 blades, cascading with further liberation of debris
 - First of type in global fleet

Intro Overview Bathtub Case Study 1

Case Study 2

Case Study 3 Case Study 4

Wear Debris

Defending Australia and its National Interests www.defence.gov.au

Case Study 2 – ADF Helicopter Engine

Case Study 2 – ADF Helicopter Engine

UNCLASSIFIED

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 3

Defending Australia and its National Interests www.defence.gov.au

Case Study 4

Wear Debris

Case Study 2 – ADF Helicopter Engine

Intro

Overview Bathtub

ons Learnt

Case Study 1 Case Study 2 Case Study 3 Case Study 4 Wear Debris

- Engine health monitoring systems are useful
- Can potentially capture impending failures
- Cost of verifying health monitoring system is almost certainly cheaper than an engine failure

HELLO CONTROL ... ALL O.K. .. ENGINE VIBRATIONS HAVE CEASED www.defence.gov.au Source: Bill Chambers - http://www.3squadron.org.au/subpages/MirageFun.htm

Australian Government
Department of Defence
Defence Aviation Safety Authority

UNCLASSIFIED

Case Study 3 – Classic Hornet Life Reduction

Overview Bathtub Case Study 1 Case Study 2 Case Study 3

Intro

Case Study 4 Wear Debris

Lessons Learnt

Defending Australia and its National Interests www.defence.gov.au

Case Study 3 – Classic Hornet Life Reduction

- OEM advised that an engine's life limits had been reviewed (using updated methods) and life limits would be updated
 - The 1st Stage Forward Cooling Plate (1SFCP) suffered a substantial decrease
 - No in-service 1SFCP failures
 - 13 ADF engines had 1SFCPs over the new limit
 - 7 of those were able to be removed and retired, but SPO sought DASA (then DGTA) approval to fly the remaining six 'overflown' engines for a further 500 ENHRS each
 - Post significant engineering effort Approval given

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 3

Wear Debris essons Learnt

Case Study 4

Australian Government

Defence Aviation Safety Authority

Case Study 3 – Classic Hornet Life Reduction

Intro

Case Study 3 – Classic Hornet Life Reduction

- **Issue:** Unexpected decrease in critical component lifing
- Effect: Multiple aircraft could have been made immediately unserviceable
- **Cause:** Review of ADF usage was not conducted for approximately 8+ years
 - Changes to mission profiles
 - Improvements in OEM critical component lifing models

Lesson Learnt

- ADF Configuration, <u>Role</u> & Environment (CRE) consistently change Will have an impact on critical component lifing
- Review ADF Usage against OEM design assumptions every 3-5 years
- A good understanding of the relevant lifing philosophy and process is required, including great relationships with the OEM

Intro Overview Bathtub Case Study 1 Case Study 2

Case Study 3 Case Study 4 Wear Debris

Case Study 4 – Engine Preservation

- **Situation:** During a compressor wash, gravel/ceramic substance was discovered in the turbine case drain hole
 - Substance was identified as Magnesium Oxide
 - Further investigation reviled **significant** corrosion of the reduction gearbox
 - Corrosion penetrated the case
- Engine in question: 16 months inactive in the previous 3 years of service
- Cause:
 - Age
 - <u>Lack of preservation during inactive time</u>
 - Multiple maintenance venues & organisations

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 4 Wear Debris

essons Learnt.

Australian Government
Department of Defence
Defence Aviation Safety Authority

Case Study 4 – Engine Preservation

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 3 Case Study 4 Wear Debris Lessons Learnt

Case Study 4 – Engine Preservation

• Effect:

- Fleet inspection of RGB for corrosion
- Permanent change to publications to conduct boroscope inspections to identify corrosion
- Conduct further analysis of water captured from compressor washes to detect MgO
- Another costly fleet recovery activity

Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 3 Case Study 4 Wear Debris Lessons Learnt Defending Australia and its National Interests www.defence.gov.au

Intro

Case Study 4 – Engine Preservation

• Lessons Learnt

- Corrosion is a known issue correct engine preservation policy could have reduced impact
- Maintenance system doesn't always interact well with the logistics system
- Not the only platform impacted by an inadequate maintenance & logistics interface
- Must have oversight of all aspects of the engine from manufacture through to disposal

Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 3 Case Study 4 Wear Debris Lessons Learnt Defending Australia and its National Interests www.defence.gov.au

Intro

ADF Wear Debris Analysis - Improvements

Current Approach

ADF Wear Debris Analysis - Improvements

ChipCHECK

 The ChipCHECK instrument is specifically designed for in-field composition analysis of aviation propulsion machinery wear debris

- Manufactured by GasTOPs Ltd and is commercial off-the-shelf
- Uses Laser Induced Breakdown Spectroscopy (LIBS) to determine elemental composition of wear debris

Intro

Overview

Bathtub

- Case Study 1
- Case Study 2
- Case Study 3
- Case Study 4

Wear Debris

ADF Wear Debris Analysis - Improvements

- ChipCHECK Operation
 - Debris are collected, washed and placed on an adhesive patch then into a sample tray. The sample tray is loaded into the instrument.

Intro Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 4

Wear Debris

Australian Government

Department of Defence Defence Aviation Safety Authority

ChipCHECK Patch Analysis Summary Report

SAMPLE IDENTIFICATION

Sample Source		Sample Analysis Result	
Aircraft	DST Test	Equipment Condition Status	To Be Developed
Designation	AXX	Analysis/Analyzer	
Aircraft Tail Number	X1	Not Required	MCD 1
System	Propulsion AXX	Unit Serial Number	
Location of Collection Device	1 Test Eng Filter		271984 2018-06-25
Serial Number	Brass1	Date of Analysis	
Not Required			2018-06-25 12:22:06 PM
Sample ID	1827198400135	Reason for Analysis	Other
Not Required		Analysis Completed By	pcs
		Notes	test cust

PATCH ANALYSIS SUMMARY

Patch Image (2592 x 1944) Patch Analysis Results Particle Area (um2) (-1296,-972) No. Alloy Particles Mn Max Total 13 9,010 713,684 4,538,620 Brass

PARTICLE ANALYSIS SUMMARY

Particle ID	Area Size (um2)	Centroid XY	Alloy Match
1	713,684	{X=586,Y=260}	Brass
2	672,995	{X=175,Y=-323}	Brass
3	502,741	{X=-99,Y=275}	Brass
4	445,137	{X=251,Y=403}	Brass
5	404,971	{X=-461,Y=402}	Brass
6	402,414	{X=-263,Y=-419}	Brass
7	374,222	{X=531,Y=-219}	Brass
8	347,484	{X=491,Y=-585}	Brass
9	340,857	{X=-575,Y=-196}	Brass
10	295,053	{X=-507,Y=-572}	Brass
11	16,915	{X=-183,Y=-338}	Brass
12	13,137	{X=-374,Y=39}	Brass
		1	

gastops

Lessons Learnt Defending Australia and its National Interests www.defence.gov.au

Chip**CHECK**

Australian Governme Department of Defence Science and Technology

UNCLASSIFIED

Intro Overview

Bathtub

- Case Study 1
- Case Study 2
- Case Study 3
- Case Study 4

Wear Debris

ADF Wear Debris Analysis - Improvements

UNCLASSIFIED

Lessons Learnt

- Platform reliability lifecycle curve gives a false sense of security to the operators during the mid-life of the platform.
- Engine health monitoring is vital throughout its life
 - Not only when availability is reduced (too late by then...)
- Changes to mission mix and missions over the course of the platforms life has deviated from OEM assumptions. Can invalidate OEM life limits.
- On Extreme situations Can cause critical component failures

Overview Bathtub Case Study 1 Case Study 2 Case Study 3 Case Study 3 Case Study 4 Wear Debris Lessons Learnt

www.defence.gov.au

Intro

What can happen if a critical component fails

Lessons Learnt

Intro

Overview Bathtub

Case Study 1

Case Study 2 Case Study 3

Case Study 4 Wear Debris

Lessons Learnt

www.defence.gov.au

Defending Australia and its National

- Platform reliability lifecycle curve gives a false sense of security to the operators during the mid-life of the platform.
- Engine health monitoring is vital throughout its life
 - Not only when availability is reduced (too late by then...)
- Changes to mission mix and missions over the course of the platforms life has deviated from OEM assumptions. Can invalidate OEM life limits. Impacts Critical Components
- Retention of Lessons
 - Document within the platform Propulsion System Integrity Management Plan (PSIMP)
 - Corporate knowledge within DAVENG
 - Has access to a repository of historical ADF platform issues
 - Can read across all ADF platforms

Australian Government Department of Defence Defence Aviation Safety Authority

UNCLASSIFIED

Defending Australia and its National Interests www.defence.gov.au

