

Australian Government

Department of Defence Science and Technology UNCLASSIFIED – Approved for Public Release

What's Keeping Us Safe?

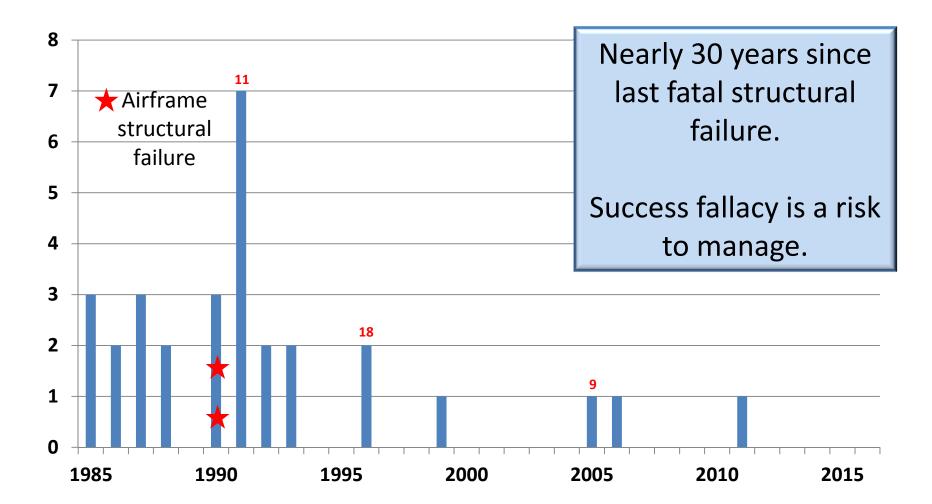
Aircraft Airworthiness & Sustainment Conference 19-21 July 2017 R. Boykett & M. McDonald Aircraft Structures Branch, Aerospace Division

Science and Technology for Safeguarding Australia

Content

- Introduction / Context
- **ADF** Aviation Fleet Horizons
- Sustainment Environment
- Science & Technology Focus
- Conclusions

Introduction


Airworthiness = Safe Aviation :

 A fundamental requirement for safe operations of aviation fleets to ensure the risk to personnel is managed at an acceptable level.

Balance Cost / Capability / Schedule

- An integral part of any fleet acquisition, & actively managed throughout service life.
- ADF: Mission First & Safety Always

ADF Fatal Accidents (1985 – 2017)

4 **DST** Science and Technology for Safeguarding Australia

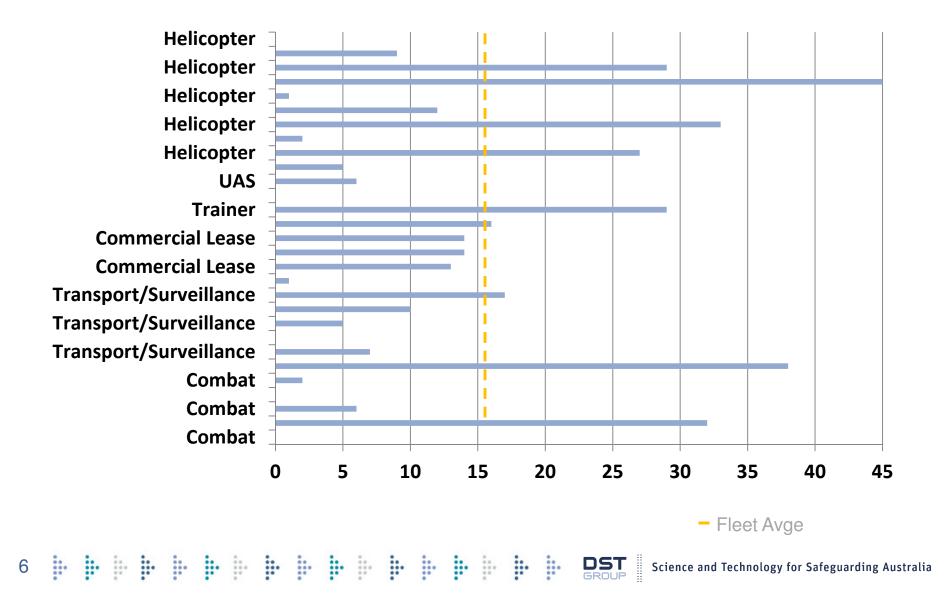
MM1

Nearly 30 year since last fatility due to structrual failure.

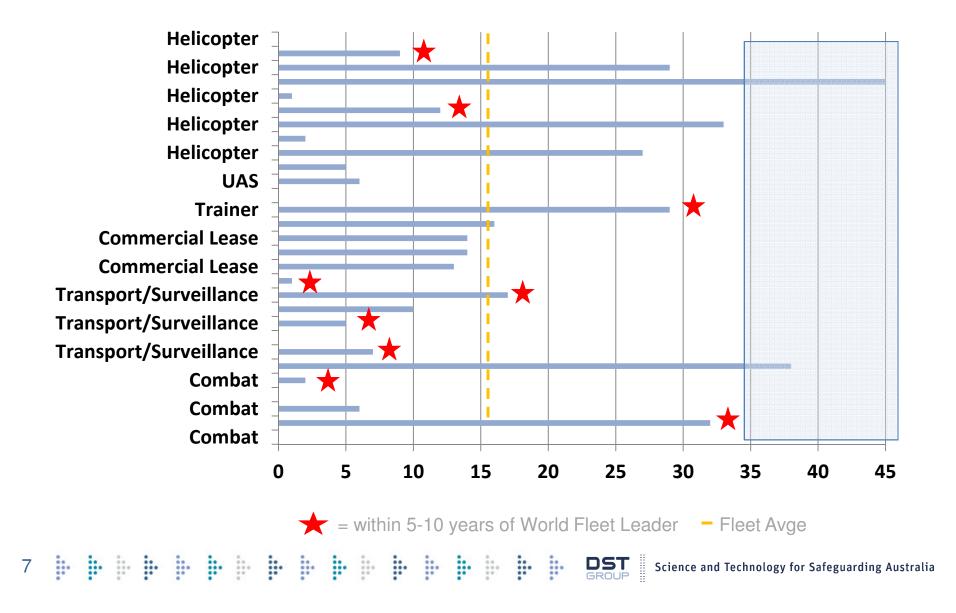
Success fallacy = new risk to be managed. McDonald, Marcus, 12/07/2017

. . .

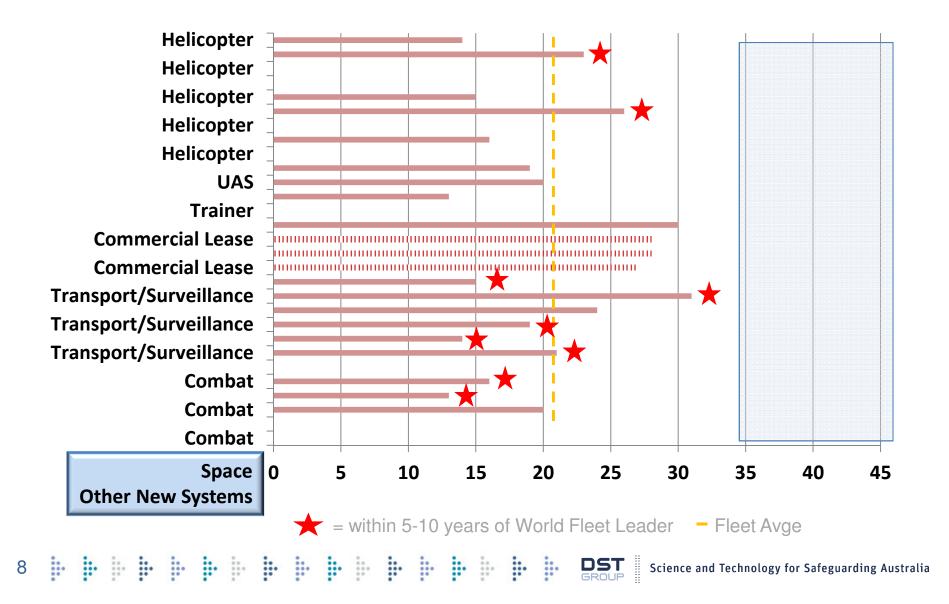
....


Philosophy, Policy, People, Processes, Products

- DDAAFS / DACPA / DG-DASA
- SPO's / Operators / DST / Industry / University
 - Traditional recipe requires regulator workforce
 - Implement European Military Aviation Regulations (EMARs)
 - Trend of delegating/dispersing responsibility


Underpinning Expertise & Experience

DAFS = Director Defence Aviation & Air Force Safety ACPA = Director Airworthiness Coordination & Policy Agency DASA = Director General - Defence Aviation Safety Authority SPO = System Program Office


ADF Aviation Fleet Age 2017

ADF Aviation Fleet Age 2017

ADF Aviation Fleet Age 2030

(i) ADF Fleet state

- Sustained Fleet Investment
 - Platform vs Systems/Payloads
- Decreasing Fleet Size
 - Improved Capability
 - Better Simulators
- Multi-Role vs Specialist Design
 - Fleet Rationalisation / Specialisation
- Structural Life of Type vs Fleet Viability
 - Aging Aircraft Structural Audits
 - Cost of Ownership
 - Capability Limits

- Traditional Support at System Program Offices with industry contractors.
 - Tailored approach using experts:
 - Highly trained ADF personnel
 - Access to full technical details for aircraft
 - Implementation of advanced S&T "Lead Crack" for Combat designs
 - Def Stan 00-970 Certification benchmark

Science and Technology for Safeguarding Australia

- Traditional Support at System Program Offices with industry contractors.
- Foreign US Military Sales.
 - Alignment with US Capability
 - Rapid Acquisition
 - Improved support via common configuration
 - Unique access to capability
 - Common Role & Environment assumptions
 - Reduced technical data access

- Traditional Support at System Program Offices with industry contractors.
- Foreign Military Sales.
- Through Life Support Contracts.
 - Align ADF and commercial goals for fleet benefits
 - Fleet Usage Data management
 - Individual Aircraft Tracking
 - Commercial System Program Offices

Science and Technology for Safeguarding Australia 12 🔛 ŀ **...** ***

- Traditional Support at System Program Offices with industry contractors.
- Foreign Military Sales.
- Through Life Support Contracts.
- European Military Aviation Regulations (EMAR).
 - Integrated Airworthiness & Cost of Ownership
- Rotorcraft Structural Integrity Program (RSIP).
 - Airworthiness for Future Vertical Lift

(iii) Technology Landscape

- Aerospace Structural Integrity Research:
 - Legacy Fleets
 - Smarter Maintenance, Repair, Modification via:
 - Usage Data Exploitation & Risk Management
 - » Digital Thread & Augmented Reality
 - Better Prediction of Metal and Composite Performance
 - » Model Validation via Research Test Beds
 - Non-Destructive Inspection
 - » New Sensor Suites and Health Prognostics

(iii) Technology Landscape

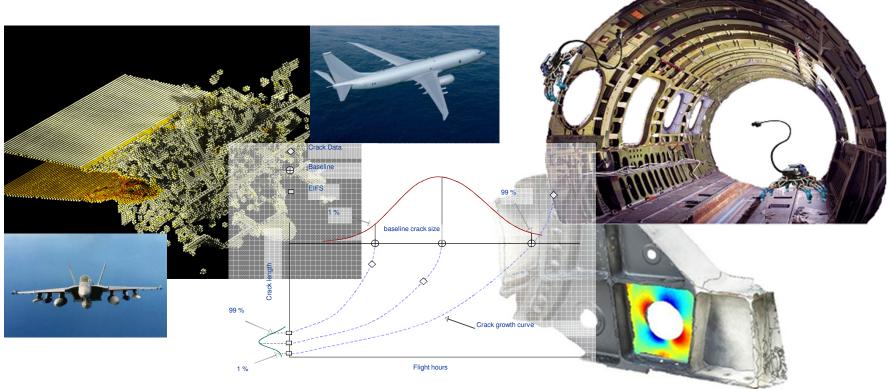
- Aerospace Structural Integrity Research:
 - New Materials: Composites & Alloys & Additive Manufacture
 - Building Block Certification and alternatives
 - Validation via repairs, mods, secondary structures
 - New design concepts

(iii) Technology Landscape

- Aerospace Structural Integrity Research:
 - New Designs Evolutionary
 - Composites / Fly-by-wire software
 - Optionally manned
 - New Designs Spacecraft
 - New Designs Revolutionary
 - Unconventional Layout
 - Unprecedented Performance
 - Hybrid Powerplants

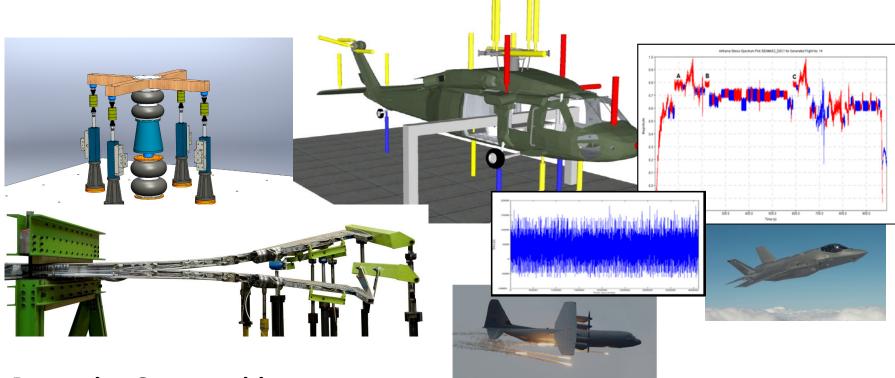
DST Directions:

- 2016 Defence White Paper
 - Innovation in Defence Industry Policy Statement, Next Generation Technology Fund, Defence Innovation Hub
- DST Strategic Plans
 - Aerospace Domain S&T Strategy
- DST Capability Portfolio Document
- DST Investment process:
 - Strategic Research Initiative,
 - S&T Program Reviews & Investment Logic Maps,
 - Major S&T Capability prioritisation


17 . Science and Technology for Safeguarding Australia

Connect, Partner, Collaborate, Innovate

Research - Structural Integrity Prediction


Partnering Opportunities:

- Development & Validation of Analytic Models to predict the effects of fatigue cracks and composite delamination from atomic scale through to full-scale aircraft structure.
- Collaborate on Research, Development and Design of next generation (autonomous) Thermoelastic Stress Analysis Robots (TSAR) to find & resolve structural problems.

18 **DST** Science and Technology for Safeguarding Australia

Connect, Partner, Collaborate, Innovate

Research Test Beds - Experimental Innovation

Partnering Opportunities:

- High Speed Testing Modelling & Developing of Advanced new Equipment, Instrumentation & Control Systems for faster speeds x10+.
- Load Spectrum Compression/Truncation Developing & Validating new analytical methods to replicate the effect using only 1% of data.

19 Science and Technology for Safeguarding Australia

Science Focus Areas	Benefits
Rapid agility	Increase ADF capability to rapidly adopt or modify aerospace systems to defeat technology surprise
New concepts	Realise future aerospace capability via new design concepts and materials - while challenging airworthiness paradigms
Capability	Maximise operational capability underpinned by robust airworthiness, optimised sustainment and certainty in platform durability
Freedom of action	ADF retains a technology edge in aerospace through a strong indigenous S&T and Defence Industry network

20 20 Science and Technology for Safeguarding Australia

- Opportunities
 - Digital connections getting easier via trusted users and secure data storage.
 - High Performance Computing.
 - Continuous Improvement vs Blocks of 15-30 yr.
 - More Australian Start-Ups (eg. commercial space).

Connections & Capability & Flexibility mean more Diverse flying assets in service Faster

Airworthiness Science Challenges	Current focus	Future focus
Failure modes managed by:	Proving or improving prediction accuracy	Proving or improving prediction accuracy & dealing smartly with prediction uncertainty
Uncertainties managed by:	Converting probabilistics to pragmatic, simple deterministic metrics (e.g. safety factors)	Explicit probabilistics that are easy to relate to and underpinned by trusted sound foundations that capture complexity.
Airworthiness decisional aids driven by context and applications:	Boxed by limited rules	Modelled & coupled
	with affordability and mission capability	

Conclusions

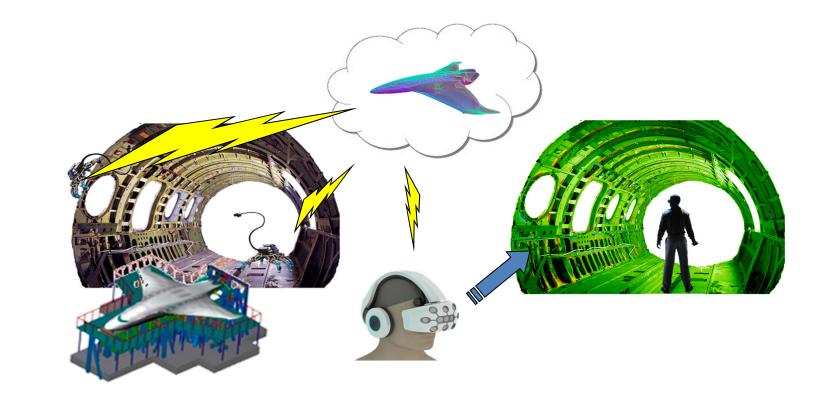
Airworthiness = Safe Aviation :

Young ADF fleets

Mid-life attention & Leading world fleets

Evolving Fleet Capability

ADF & Defence S&T & University / Industry involvement


Advance Structures Technology

New Design Concepts & Maintenance, Repair / Modification

More Diverse flying assets in service Faster

- Science & Technology essential
- Start early & lean forward

Questions

