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Additive Manufacturing at NASA

' AM is a subset of NASA’s Advanced Manufacturing projects
Across missions, NASA’s AM involvement covers all Technology Readiness Levels

Space applications include Earth-to-Space transportation and In-Space sustainment

NASA’s motivations in AM are common:
* We see AM as an enabling technology

* Design innovation

* Costreduction

* Time savings

For high-TRL applications,

the primary focus is SAFE IMPLIMENTATION

* Attention to Standardization

* Development of qualification and certification
methodologies




Additive Manufacturing at NASA
HEO Applications
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Additive Manufacturing at NASA
HEO Applications
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AM Certification:
Standardization Activities

Avoiding ad hoc implementations of AM

* NASA Standards and Specifications
* Industry consensus standards
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ASTM F42 Committee on Additive Manufacturing

ISO TC261 Additive Manufacturing

ASTM Center of Excellence in Additive Manufacturing

SAE Technical Committee, AMS AM Additive Manufacturing

George C. Marshall Space Flight Comer
Ml Space Fight Coctor, Alsbama 35812
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MESECTR CHNICAT STANDARD, MSFC TECHNICAL STANDARD

Standard for Additively Manufactured Spaceflight
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NASA Standards and Specifications in AM
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AM Certification:
Governing Principles
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" W * Understanding and Appreciation of the AM process

5. : % * Integration across disciplines and throughout the process

* Discipline to define and follow the plan

Have a plan
Integrate a Quality Management System (QMS)

Build a foundation
* Equipment and Facility
* Training

. ofs _ye " / Rationale
* Process and machine qualification SEl: O BRI for
° Material Pro . Metallurglcal Part Process "
perties / SPC Process (QPP) Qualified
(QwP)
* Plan each Part AM parts

Material

* Design, classification, Pre-production articles S:zsf(ea;;
* Qualify and lock the part production process

Produce to the plan - Stick to the plan




AM Certification:
Governing Principles
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AM Certification:
Technology Challenges

Non-destructive Evaluation
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Moving CT from research mode to
certification mode.
Must shift the CT culture and focus

From:

“How small a defect can be found?”
To:

“How large a defect can be missed?”




AM Certification:
Technology Challenges
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How to approach in-situ monitoring of AM processes?

1554 deg. C

* Harnessing the technology is only half the battle

Horizontal Position (Pixels)

* Detectors, data stream, data storage, computations

* Second half of the battle is quantifying in-situ process monitoring reliability Part Desiar

Community must realize that passive in-situ monitoring is an NDE technique

1.  Understand physical basis for measured phenomena

2. Proven causal correlation from measured phenomena to a well-defined defect state
3. Proven level of reliability for detection of the defective process state
False negatives and false positives — understanding and balance is needed
Closed loop in-situ monitoring adds significantly to the reliability challenge
No longer a NDE technique — may not be non-destructive

Establishing the reliability of the algorithm used to interact and intervene in the AM process
adds considerable complexity over passive systems
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