

Additive Manufacturing @ NASA

A Summary of NASA 's Efforts in the Development of Additively Manufactured Metallic Hardware Aircraft Airworthiness and Sustainment 2019, Brisbane, Australia | July 26 2019 Douglas Wells, Technical Specialist

The NASA Mission Directorates

Human Exploration and Operations (HEO)

Commercial Lunar Payload Services - CLPS delivered science and technology payloads

Large-Scale Cargo Lander - Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

The Latest Challenges

Additive Manufacturing at NASA

AM is a subset of NASA's Advanced Manufacturing projects

Across missions, NASA's AM involvement covers all Technology Readiness Levels

Space applications include Earth-to-Space transportation and In-Space sustainment

NASA's motivations in AM are common:

- We see AM as an <u>enabling technology</u>
 - Design innovation
 - Cost reduction
 - Time savings

For high-TRL applications, the primary focus is SAFE IMPLIMENTATION

- Attention to Standardization
- Development of qualification and certification methodologies

Additive Manufacturing at NASA HEO Applications

For-Space Applications

Schematic of integrated SLM copper/EBF³ Inconel nozzle

SpaceX SuperDraco

Aerojet-Rocketdyne RS-25

Nozzle after completion of EBF³ deposition of Inconel onto SLM copper liner

Additive Manufacturing at NASA HEO Applications

In-Space Manufacturing

AM Certification: Standardization Activities

Avoiding ad hoc implementations of AM

- NASA Standards and Specifications
- Industry consensus standards
 - ASTM F42 Committee on Additive Manufacturing
 - ISO TC261 Additive Manufacturing
 - ASTM Center of Excellence in Additive Manufacturing
 - SAE Technical Committee, AMS AM Additive Manufacturing

NASA Standards and Specifications in AM

AM Certification: Governing Principles

- Understanding and Appreciation of the AM process
- *Integration* across disciplines and throughout the process
- *Discipline* to define and follow the plan
- Have a plan
- Integrate a Quality Management System (QMS)
- Build a foundation
 - Equipment and Facility
 - Training
 - Process and machine qualification
 - Material Properties / SPC
- Plan each Part
 - Design, classification, Pre-production articles
 - Qualify and lock the part production process
- Produce to the plan Stick to the plan

AM Certification: Governing Principles

Process Qualification and Control

Start-to-Finish Holistic Integration

 t_L

Surface Texture & **Detail Resolution**

Fusion Process/Thermal Process/Microstructure

Statistical Process Controls

AM Certification: Technology Challenges

Non-destructive Evaluation

Understanding AM defect characteristics

Moving CT from research mode to certification mode. **Must shift the CT culture and focus**

From:

"How small a defect can be found?"

To:

"How large a defect can be missed?"

AM Certification: Technology Challenges

How to approach in-situ monitoring of AM processes?

- Harnessing the technology is only half the battle
 - Detectors, data stream, data storage, computations
- Second half of the battle is quantifying in-situ process monitoring *reliability*

Community must realize that passive in-situ monitoring is an NDE technique

- 1. Understand physical basis for measured phenomena
- 2. Proven causal correlation from measured phenomena to a well-defined defect state
- 3. Proven level of reliability for detection of the defective process state False negatives and false positives \rightarrow understanding and balance is needed

Closed loop in-situ monitoring adds significantly to the reliability challenge

No longer a NDE technique – *may not be non-destructive*

Establishing the *reliability of the algorithm* used to interact and intervene in the AM process adds considerable complexity over passive systems

Horizontal Position (Pixels)

Thank You douglas.n.wells@nasa.gov