

Australian Government

Department of Defence Capability Acquisition and Sustainment Group

S-70A-9 Black Hawk Ageing Aircraft Threats – A SPO Perspective

Army Aviation Systems Program Office

Captain Steve Wardill S-70A-9 Aero-Mechanical Systems Manager

> Defending Australia and its National Interests www.defence.gov.au

- S-70A-9 Black Hawk overview
- Brief history of S-70A-9 structural integrity management
- S-70A-9 airframe cracking examples
- AASPO considerations for the future
- Case example of an in-house AASPO solution
- Conclusion

REFERENCES

- AASB-SOP-(ENG) 12-0-100 Enclosure 3 S-70A-9 Black Hawk Type Record
- Boykett, R. (2001), *Airframe Structural Integrity Enhancements for the Black Hawk Helicopter,* Fishermans Bend, DSTO
- Defence Aviation Safety Program (2017), *Helicopter Structural Engineering Familiarisation Course,* (2017), HSEF Course No 01/2017
- Development of the S-70A-9 Black Hawk AUUS2, (2011), Melbourne, QinetiQ
 AeroStructures Pty Ltd
- Development of the S-70A-9 Condensed AUUS2, (2011), Melbourne, QinetiQ AeroStructures Pty Ltd
- DGTA-ADF (2012), Black Hawk Aircraft Structural Integrity Management Plan Issue 5
- Dore, C. (2005), *Review of Black Hawk Structural Upgrade Options and Recommendations for the Australian Defence Force,* Fishermans Bend, DSTO
- HH-60G Airframe Service Life Extension Program Phase 0, Detail Planning, (1999), Georgia, Georgia Tech Research Institute

Army Aviation Systems Program Office (AASPO)

Army Aviation Systems Program Office (AASPO)

Indicative responsibilities of CAMO, 21J Design and 145 AMO against TAREG AEO and AMO

S-70A-9 Black Hawk

S-70A-9 Black Hawk

Design

Specifications/Standards:

- MIL-S-8698
 - Structural Design Requirements, Helicopters
- MIL-A-008860A
 - Airplane Strength and Rigidity Reliability Requirements, Repeated Loads and Fatigue
- SER-50586
 - Fatigue Properties and Analysis
- MIL-T-5955C
 - Transmission Systems
- SES-701051
 - Finishings and Coatings
- MIL-008870A
 - Airplane Strength & Rigidity (Aeroelastic Instability)
- MIL-A-008860A
 - Airplane Strength and Rigidity (Primary Structure)

Flight Essential Component	Projectile	Striking Velocity
Control rods (Primary Servo to Main Rotor Blades)	12.7 mm AP	1600 ft/sec
Main Rotor Swash Plate Assembly	12.7 mm AP	1600 ft/sec
Main Rotor Shaft	23 mm AP or 23 mm HE	1600 ft/sec
Main Rotor Hub and Elastomeric Bearing Assembly	23 mm AP	1600 ft/sec or 23 mm HE
Main Rotor Blades	23 mm AP 23 mm HE	1600 ft/sec at 1600 ft/sec for at least 90 percent of lower hemisphere type impacts
Tail Rotor Drive Shaft (tail cone)	12.7 mm AP	1600 ft/sec
Tail Rotor Drive Shaft (Pylon)	23 mm AP	2600 ft/sec
Tail Rotor Hub	12.7 mm AP	1600 ft/sec
Tail Rotor Blade (Flatwise)	23 mm AP	2600 ft/sec

S-70A-9 Black Hawk

Design

Materials:

- Sheet and extrusion:
 - 7075-T6
 - 2024-T4
- Forged/machined fittings:
 - 7075-T6511
 - 2024**-**T6511

S-70A-9 Black Hawk

S-70A-9 Black Hawk

Unique ADF Characteristics

- Improved durability gearbox (Seahawk main transmission)
- Rotor brake
- Automatic Flight Control System
- Armour protection
- Hydraulic Rescue Hoist
- Wire strike protection system
- ESSS provisions
- Folding stabilator
- Hover IR suppressors
- Unique avionics configuration
- Counter-measure provisions

DESIGN USAGE SPECTRUM

Australian Unique Usage Spectrum (AUUS)

- At purchase, S-70A-9 CRTs based on UH-60A design usage spectrum
- In 1992 Sikorsky contracted to create unique ADF spectrum
- Data obtained through:
 - Mission monitoring forms
 - Long form questionnaire
 - Witnessing
- Sikorsky determined that S-70A-9 spectrum more severe than UH-60A spectrum
- Impact study recommended revised CRTs (RRTs) for five components:

Component	UH-60A CRT (Flt Hr)	S-70A-9 RRT (Flt Hr)
Main Support Bridge	1800	910
Main Rotor Cuff	2400	980
Main Rotor Hub	5400	2600
Rotating Swashplate	11000	6400
Tail Rotor Output Shaft	5100	3300

• ADF subsequently introduced a paper based usage monitoring system (EE360 forms)

DESIGN USAGE SPECTRUM

AUUS2

- Subsequent comparisons of EE360 data to AUUS suggested that revised S-70A-9 CRTs may be overly conservative
- Black Hawk CRT Project raised. QinetiQ tasked with developing modified AUUS (AUUS2), based on 5 years of EE360 data
- AUUS2 approved for use in 2010.

Condensed AUUS2

- Scope of original AUUS work performed by Sikorsky limited to CRT analysis of only 12 components –
 flight loads for remaining critical structures were not available
- In order to expand component CRT analysis QinetiQ tasked with manipulating AUUS2 to match UH-60A design usage spectrum known as Condensed AUUS2.

Flight Manoeuvre Recognition Software

- Introduced in 2015
- Interrogates FDR data
- Has so far strengthened confidence in CRTs derived from AUUS2.

AIRFRAME STRUCTURAL MANAGEMENT

Significant H-60 Airframe Studies:

HH-60G Airframe Structural Integrity Enhancements (1995)

- Georgia Tech Research Institute (GTRI) commissioned to determine airframe structural integrity enhancements for USAF HH-60G Pave Hawk aircraft associated with addition of mission equipment to aircraft
- 17 fatigue 'hot spots' identified from review of in-service history.

Sikorsky Identification of Critical Airframe Fatigue Sites (2002)

- Advanced Structural Technology Inc. commissioned by Sikorsky to identify 100 most critical airframe fatigue sites, for further analysis
- 108 cracking 'hot spots' identified.

HH-60G Service Life Extension Program (2003)

- USAF requirement to extend HH-60G Pave Hawk life to 2015 (20 000 flt hrs)
- GTRI reviewed 2600 fatigue occurrences across 650 USAF and US ARMY aircraft
- 183 fatigue 'hot spots' identified.
 - 96 Category A (critical/major problems having direct impact on the airframe structural integrity and safety of flight)

AIRFRAME STRUCTURAL MANAGEMENT

Mod -184

Tail Pylon Assembly Structural Reinforcement and Fatigue Enhancement

Dec 1997

Mod -190

Yaw Torque Shaft Support Structure Reinforcement Dec 1997

Mod -185

Installation of Inner and Outer Structural Reinforcement Around Forward Cabin Windows

Mod -208

Installation of Support Doubler to Aft Transmission Beam Sep 1999

Mod -221

Installation of Structural Reinforcement in Upper Cabin Aug 2003

Mod -243

Installation of Countermeasures Dispenser System May 2010

Mod -248

Installation of SATCOM and Line of Sight Antennas Dec 2012

Mod -259

Installation of SATCOM Antenna Base Reinforcing Doubler Oct 2013

-60 AIRFRAME HOT SPOTS

70A-9 AIRFRAME HOT SPOTS

S-70A-9 AIRFRAME HOT SPOTS

3

1. Longeron Splice Cantered Bulkhead FS 647

2. Tension Fittings @ Splice to Transition Section FS 485 3. Tail Cone Skins

S-70A-9 AIRFRAME HOT SPOTS

70A-9 AIRFRAME HOT SPOTS

1. Fwd Spar Splice

2. Aft Spar Splice @ Horizontal Stab

70A-9 AIRFRAME HOT SPOTS

1. Fwd Spar Splice

2. Aft Spar Splice @ Horizontal Stab

<u>A25-219</u> Nov 2016

Baseline R32 servicing cost:

~\$10K; 3-4 weeks

Discovery of crack: +\$51.5K; +6 weeks

A25-112 Feb 2017

A25-215 Apr 2014

A25-219 Jul 2014

A25-106 Jul 2014

RECENT CRACKING EXAMPLES

Condition Monitoring System (CMS)

Structural Condition Assessment Report (SCAR) for Main Rotor Blade:

ENVIRONMENTAL DEGRADAION MNGT

- Through early 90s there was up to 50% S-70A-9 fleet unavailability due to corrosion issues
- Corrosion prevention program developed in 1994:

SO WHAT FOR AASPO?

- Structural degradation ('nuisance cracking') of airframe will be a prevalent sustainment issue for S-70A-9 through to PWD
- Increased reliance on structural engineering support
 - DASA-HSI
 - QinetiQ
 - DST-G
 - Sikorsky Helitech
- Operational demand for Black Hawk = pressure to minimise down time
 - Appetite for quick turnaround localised repairs
 - Constrained scope for fleet-wide remediation programs
 - OEM solutions may not be longer be practical
- Is there a need for introduction of targeted and rigorous inspection regimes?
 - Will need to be carefully designed in consideration of aircraft operational demand
- Are we appropriately reporting, tracking and analysing airframe cracks?

CASE EXAMPLE

Primary Servo Wear Strap Disbond

- Disregard for fatigue as an airframe design criterion has subsequently challenged the service life of the aircraft
- Significant effort and resources have been (and continue to be) invested in retrospectively addressing airframe fatigue
- Development of a unique S-70A-9 usage spectrum has highlighted the sensitivity of CRTs to deviations from the DUS
- Development and ongoing verification of S-70A-9 usage spectrum is primarily based on form-based reporting
- Early investment in an Environmental Degradation Management Program has reaped significant operational and financial returns.

CONCLUSION

Lessons from the Black Hawk story:

- 1. Disregard for rotary wing airframe fatigue during design will come back to bite
- 2. Validation of the operational usage spectrum against DUS is essential
- 3. An instrumented usage monitoring system is a worthy investment
- 4. A tailored Environmental Degradation Management Program is a critical investment
- 5. An airframe structural management framework should match the critical dynamic component management framework